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ENGAGING VOLUNTARY CONTRIBUTIONS IN ONLINE 

COMMUNITIES: A HIDDEN MARKOV MODEL 

 

Abstract 

User contribution is critical to online communities but also difficult to sustain given its 

public goods nature. This paper studies the design of IT artifacts to motivate voluntary 

contributions in online communities. We propose a dynamic approach, which allows the effect 

of motivating mechanisms to change across users over time. We characterize the dynamics of 

user contributions using a hidden Markov model (HMM) with latent motivation states under 

the public goods framework. We focus on three motivating mechanisms on transitioning users 

between the latent states: reciprocity, peer recognition, and self-image. Based on Bayesian 

estimation of the model with user-level panel data, we identify three motivation states (low, 

medium, and high), and show that the motivating mechanisms, implemented through various 

IT-artifacts, could work differently across states. Specifically, reciprocity is only effective to 

transition users from low to medium motivation state, whereas peer recognition can boost all 

users to higher states. And self-image shows no effect when a user is already in high 

motivation state, although it helps users in low and medium states move to the high state. 

Design simulations on our structural model provide additional insights into the consequences 

of changing specific IT artifacts. These findings offer implications for platform designers on 

how to motivate user contributions and build sustainable online communities.  

 

Keywords: Online community, IT artifacts, voluntary contribution, dynamics of 

contribution, motivating mechanisms, structural modelling, public goods, hidden Markov 

model, Bayesian estimation 
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ENGAGING VOLUNTARY CONTRIBUTIONS IN ONLINE 

COMMUNITIES: A HIDDEN MARKOV MODEL 

 

Introduction 

In the growing digital economy, online communities have become central in bringing 

together large numbers of geographically dispersed individuals to spark novel ideas, 

collaborate on inventions, and share knowledge (Boudreau and Lakhani 2009; Goh et al. 2016; 

von Hippel 2005). Users in many of these communities, e.g., knowledge sharing platforms like 

StackExchange and Quora, usually contribute voluntarily without receiving monetary 

compensation. To engage user contributions in such a setting, online communities commonly 

design information technology (IT) artifacts as motivating mechanisms (Ma and Agarwal 2007; 

Ray et al. 2014). Among these motivating mechanisms, various forms of “gamification”, such 

as badges, votes, and status systems, have been widely adopted (Zichermann and Cunningham 

2011).   

Despite their growing popularity, such design efforts do not always achieve positive 

results. Most of the online communities (even famous ones like Wikipedia) face the challenge 

of declining user participation over time (Simonite 2013). In particular, inappropriate design 

could alienate users and drive them away. For instance, Wikipedia’s quality control 

mechanism was counterproductive in retaining new users (Halfaker et al. 2013). In the case of 

the social news aggregator Digg.com, the redesign efforts angered users and lost them to 

competitors (Metz 2012). While social comparison can encourage users below the median to 

contribute more, users above the median could decrease their contribution to conform to the 

social norm (Chen et al. 2010). Goal-setting can induce users to exert efforts, but it can also 

reduce efforts after users reach the goals (Goes et al. 2016). 
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From a theoretical perspective, the design of such mechanisms is related to individual 

motivations, which are extensively studied in the literature (e.g., Ma and Agarwal 2007; Porter 

and Donthu 2008). Yet, these motivations are usually theorized as static, even though recent 

research suggests that users’ contribution patterns exhibit significant dynamics (Sauermann 

and Franzoni 2015). Fitting a static model to data generated by a dynamic process may result in 

misleading findings. To the best of our knowledge, no prior work has empirically analyzed the 

dynamic relationship between motivating mechanisms and voluntary user contribution in 

online communities. This leaves a gap in our understanding of how a user’s motivation and 

contribution are dynamically influenced by the design of motivating mechanisms.  

In this paper, we focus on the design of motivating mechanisms through IT artifacts 

when user motivations can change, and investigate the following research questions: (1) what 

kinds of mechanisms and IT artifacts are effective to transfer users among different levels of 

motivation? (2) how much would users contribute given their levels of motivation? An 

understanding of the dynamic effect along these two dimensions is essential to better design IT 

artifacts and effectively motivate user contributions.   

In contrast to the literature, we take a dynamic approach. Specifically, we propose a 

structural econometric model, in which we integrate a hidden Markov model (HMM) into the 

public goods framework. This structural approach characterizes the dynamics of user 

contributions with different motivation states, as well as and the transition between the states. 

With a unique panel data set collected from a knowledge-sharing community, we use 

Bayesian estimation to jointly estimate the effect of motivating mechanisms on transition 

probabilities between the states, and user contributions conditional on their motivation states.  

We find that the same motivating mechanism could work differently across states. For 

example, reciprocity is only effective to transition users from low to medium motivation state, 

whereas peer recognition (such as votes and acceptance from other users) are effective to 
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elevate all users to the high motivation state. Badges are effective to transfer a low- or 

medium-motivation user to the high motivation state, but surprisingly, they show no effect 

when a user is already in the high motivation state. We also find that users do respond more 

to the demand of knowledge (i.e., number of questions that match their expertise) when they 

are in higher motivation states. These results provide important implications for the design of 

IT artifacts in online communities, and open up a new area for community managers to 

explore. 

Our research has several features. First, we advance the literature from the conventional 

static approach to a dynamic perspective on voluntary user contributions, bringing about 

managerial insights unavailable in prior studies. Second, our structural model helps advance 

the modelling approach in the online community literature, as it explicitly characterizes the 

dynamics of user contributions at the individual level. Third, our dynamic approach provides 

more nuanced insights into an increasingly important mode of open collaboration, and is 

applicable to a wide range of online communities where user contributions are voluntary and 

fluctuate over time (Xu et al 2012).  

Literature Review 

We draw on the literature to build a theory of dynamic motivation and contribution in 

online communities. We first examine factors that affect user motivation, and illustrate how the 

design of IT artifacts can influence contribution through various motivations. Then we identify 

the dynamics of motivation and contribution as a gap in the literature, which motivates our 

hidden Markov model to characterize such dynamics.  

User Motivation and IT Artifacts as Motivating Mechanisms  

In online communities, motivation is the key driver of user contribution. The literature has 

distinguished three types of motivations: intrinsic, extrinsic, and internalized extrinsic 
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motivation (see von Krogh et al. 2012 for a review). Intrinsic motivation stems from intrinsic 

benefits, such as joy, fulfilment, and self-efficacy (Kankanhalli et al. 2005; Ray et al. 2014). In 

contrast, extrinsic motivation is driven by economic rewards such as career prospects (Huang 

and Zhang 2016; Roberts et al. 2006). 

Internalized extrinsic motivation is unique, in that it arises from external influences at first, 

but users can assimilate these influences and perceive them as self-regulating behavior rather 

than external impositions (Deci and Ryan 2002). In online communities, internalized extrinsic 

motivation includes reciprocity and reputation (von Krogh et al. 2012). Reputation can be 

further classified as peer recognition and self-image. We discuss these three factors below. 

 First, reciprocity suggests that users who have received others’ help tend to return the 

favor. It is shown to drive contributions in open source software (Lakhani and von Hippel 2003; 

Zhu and Zhou 2012) and online communities (Chiu et al. 2006). Second, social interactions, 

especially peer recognition, validate users that their role in the community is expected (Ray et 

al. 2014). This identity-verification process enhances the confidence of contributors, and 

reassures users to contribute with their unique identity (Ma and Agarwal 2007). Third, 

concerns over self-image can also motivate contribution, as people care about the way others 

perceive them (Bénabou and Tirole 2006). In online communities, it is common that users 

contribute in order to earn respect from others and build a better image (Kankanhalli et al. 

2005). It is also shown that self-image is important to drive participation in social media 

(Toubia and Stephen 2013).  

Through its influence on internalized extrinsic motivation, an online community can affect 

users’ contribution by employing various IT artifacts as motivating mechanisms (Ma and 

Agarwal 2007; Peng and Dey 2013). Examples of such IT artifacts include points, badges, 

status, reputation systems, and other features that facilitate verification of self-identity (e.g., 

Khansa et al. 2015). Among various IT artifacts, we focus on three types of mechanisms that 
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support reciprocity, peer recognition and self-image, specific to our research context of 

knowledge-sharing online communities. First, users whose questions have been answered by 

others may be more likely to answer others’ questions in return. Second, users may care the 

evaluation from their peers, through IT artifacts that facilitate user interactions, such as 

up-votes and acceptance of answers. Third, the community awards badges to users when they 

contribute, which improves users’ self-image and serve as a signaling mechanism.  

Dynamics of Motivation and Contribution 

Despite the growing literature on user motivations and motivating mechanisms, a majority 

of these studies build on an implicit static assumption. That is, the relationship between 

motivating mechanisms and user contributions does not change over time. This is a strong 

assumption, especially if we examine user contributions over a long time. It is because user 

motivations often evolve with their changing personal characteristics and their interactions 

with the community via the channel of various IT artifacts, leading to the fluctuation of 

contributions (Franzoni and Sauermann 2014).  

The internalized extrinsic motivation and the facilitating IT artifacts may have different 

effects when user motivations are evolving. We expect reciprocity to enhance user motivation. 

But this effect may be less salient for highly motivated individuals because they contribute 

disproportionally more than they receive. For peer recognition, users may feel satisfied with 

their current good reputation, and do not contribute further. Indeed, research finds that users 

may decrease their contributions after reaching certain incentive hierarchy (Goes et al. 2016). 

With large amount of badges, users may suffer from the “moral licensing” effect, where people 

may feel justified behaving non-prosocially when they have done something pro-social 

(Gneezy et al. 2012). Having contributed to the online community and been endorsed by 

badges, users may sit on their laurels and feel entitled not to contribute subsequently.  
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Modeling the dynamic process in a static way leads to problematic estimation and 

misleading implications. In this paper, we propose a theoretical framework of dynamics that 

differs from the literature in two dimensions. First, we propose motivation state as a general 

construct to characterize individual’s propensity to contribute, and model it as a mediator 

between the motivating mechanisms and user contributions. Second, we relax the assumption 

that an individual’s motivation state is fixed, and allow it to change over time. Our model also 

allows the impact of motivating mechanisms to be heterogeneous when users are in different 

motivation states. As such, we introduce a general model to explain the dynamics of user 

contributions.  

Further, our approach has an evident empirical advantage. Prior studies use survey data to 

measure the psychological state of contributing (e.g., Ray et al. 2014). However, these 

constructs are hard to quantify with consensus. It is also costly to survey a large number of 

users over time to reveal the dynamics. Instead, we use observational data to infer motivation 

states and characterize individual dynamics. This approach enables community managers to 

estimate the dynamic motivation states of all users. 

We make a distinction between the dynamics at the community level and at the individual 

user level. At the community level, the dynamics may come from membership turnover (Butler 

2001). Recent studies find that more turnover may be better for the community at the 

knowledge-retention stage of the life cycle (Ransbotham and Kane 2011). However, it remains 

unclear how dynamics at the aggregated level may come from individual-level behaviors, and 

what mechanisms community designers can use to promote the desired outcome. To narrow 

this gap, we focus on the dynamics of user motivation and contribution at the individual level.  

Model the Dynamics of User Contribution 

One challenge of capturing individual-level dynamics is that the structure of such 
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dynamics is usually unobservable. To capture this latent structure, the discrete state space 

model is a useful approach in the literature (e.g., Heckman 1981). For example, an individual’s 

present decision depends on his past decision. In most of these models, the states are 

observable (e.g., brand switching of customers). Still, they tend to ignore other dynamics that 

could contribute to the change of states. In many other scenarios, however, we cannot observe 

the underlying states that drive the individual-level dynamics, e.g., motivation states in our 

research context. In this case, the hidden Markov model (HMM) can be useful.  

An HMM is a stochastic process that consists of three elements: a finite set of hidden states, 

observed outcomes conditional on the hidden state, and the probabilities of transitioning from 

one state to another. It has wide applications in modelling stock market volatility (e.g. Rydén et 

al. 1998), business cycles (e.g., Hamilton 1989), customer relationship management (Netzer et 

al. 2008), and the mental states of patients in healthcare communities (Yan and Tan 2014). As 

far as we are aware, HMM has not yet been applied to modelling user contributions in online 

communities. Furthermore, we incorporate HMM into the public goods model (Bénabou and 

Tirole 2006) to formalize the dynamic effect of motivating mechanisms. This structural 

modeling approach allows us to explicitly characterize the dynamics of user contributions at 

the individual level. 

Research Design 

To characterize the dynamics of user contributions, we develop a HMM model as shown 

in Figure 1. It illustrates how a user could switch between motivation states through various 

motivating schemes, and how his contribution probability depends on the states. Specifically, 

our HMM model has three elements:  

(1) We model users with different hidden motivation states, with 1 being the lowest and J 

the highest. The state captures the strength of motivation to contribute. At any time t, a user is 

in only one state. 
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(2) From time t-1 to t, the user could switch to any state with certain probability, which is 

affected by the user’s interaction with the community, such as how his contribution is 

evaluated by the peers. The community interactions are enabled by various IT artifacts that 

work through motivating mechanisms (e.g., reciprocity, peer recognition, and self-image).   

(3) Conditional on his state in t, a user may respond differently to community and 

individual characteristics (e.g., size of the community and the demand for knowledge). We 

can observe this state-dependent response as his level of contributions in t.  

This model can be applicable to various online communities, as long as user motivation 

is unobservable, user contributions fluctuate, and the goal of the community managers is to 

motivate user contributions by designing appropriate IT artifacts.  

   

  Figure 1.  Hidden Markov Model of User Contributions 

 

Research Context 

We study our research questions in an online community called StackExchange 

(stackexchange.com), which is a representative, large network of knowledge-sharing platform 

based on Wikipedia-style voluntary contributions. It started in 2008 with StackOverflow, a 

knowledge sharing website on programming. Now it has expanded to more than 100 sub-sites 

covering widespread technical (e.g. math, Tex) and non-technical (e.g. cooking, bicycle) 
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topics. On each sub-site, users ask topic-related questions and provide answers. Users can 

also vote, comment, and revise other users’ questions and answers as they do in Wikipedia, 

which allows the community to improve the content collectively.  

Like many other online communities, StackExchange faces the challenge to maintain 

user participation. To cope with this, StackExchange employs various mechanisms to 

encourage user contribution and to sustain the high quality of questions and answers. For 

example, when a user receives 10 up-votes on one of his answers, he earns a “Nice Answer” 

badge. If the answer receives more than 40 up-votes and is accepted by the question poster, 

he is rewarded a “Guru” badge. Our sample includes 158 types of badges and they have been 

awarded for 414,761 times. A user can also earn reputation points, which are displayed 

together with the badges right below the user name on the profile page. These mechanisms 

serve as important channels for the users’ identity verification.       

These features help us understand user behaviors when knowledge collaboration is 

organized in such a voluntary community. First, it provides detailed data about user 

interactions. For example, we can observe when a user receives an up-vote on his answer, and 

whether his answer has been accepted. Such fine-grained user-level data help us identify the 

effect of different interactions on users’ transition probabilities. Second, as many other online 

communities are using similar motivating mechanisms, our analysis could be generalized in a 

broader sense. For example, peer voting is used in crowdsourcing ideation initiatives (Huang 

et al. 2014), and the badge system is one important device in many online communities 

(Piskorski et al. 2010).    

Data 

Our data comes from SuperUser.com, a sub-site of StackExchange, for computer 

enthusiasts and power users. We employ SuperUser because of its data quality, as it is one of 
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the largest sub-sites on StackExchange by the number of contributions. It employs various 

mechanisms to engage users, such as voting and badge systems. Hence the site has rich 

information on user interactions that are appropriate to study our research questions.  

SuperUser was launched in July 2009, and has accumulated about 214,000 questions and 

over 351,000 answers by April 2014. We collected detailed data on daily activities of each 

user from July 12th 2009 to March 1st 2012 (964 days). We only include users who contributed 

at least 10 answers during the sample period.1 Our full sample contains 2,147 users who have 

contributed 127,360 out of the 157,375 answers, equivalent to 26,200 hours of work.2 

Because these users make over 80% of the contributions, it is critical to understand their 

behaviors. 

Community and User Level Trends 

We first demonstrate the general trends of the data in Figure 2. Except the surge around the 

launch of the community, the numbers of new questions (graph-a) and answers (graph-b) are 

relatively stable over time. Similarly, the trends are stable for the numbers of badges and 

up-votes, as shown in graphs (d) and (e), respectively. Graph (c) plots the number of accepted 

answers each day. The stable trend suggests that question posters deem the quality of answers 

being consistent over time. We also plot in graph (f) the average up-votes per answer, which 

indicates the overall quality of the answers in the community. The trend is stable except for a 

decline at the initial stage. Overall, SuperUser is a relatively healthy community with steady 

contributions in our sample.  

                                                   

1 We also conduct robustness checks with different samples. See the Robustness Checks Section.  
2 Assuming each answer takes 10 minutes on average. This estimate is conservative since many users would need to do 
some coding in order to provide an answer, which may take more time. 
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Figure 2.  Trends of Key Variables  

The contributions at the individual level, however, show a different pattern. Figure 3(a) 

presents the average number of answers contributed by each user over time. The contribution 

shows a declining pattern. However, some users stay for a long time in the community. Figure 

3(b) shows a histogram of contribution tenure, which is defined as the days between the first 

and last answers of each user. We can see significant heterogeneity in the time span during 

which users contribute. For those users contributing for a long time, understanding their 

behaviors and motivations can help develop sustainable online communities.    

Figure 3.  Average Answers over Time and Tenure Distribution  

We further drill down to individual level and plot the contributions of five representative 

users from our sample in Figure 4 (user IDs anonymized). Each row shows the answers of a 

user over the sample period. Each point represents the number of answers contributed by that 
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user. A point is missing if the user does not contribute at a particular time. We observe that even 

relatively active users exhibit substantial fluctuation of contributions during their tenure. They 

actively contribute for some time periods, while idling for other periods. Our goal is to model 

the fluctuation of user contributions (dynamics), and study the influence of different 

motivating mechanisms that drive such dynamics of active (or lack of) contributions.  

 
Figure 4.  Fluctuation of User Contribution over Time 

 

Model Development: Structural Modelling of User Behavior 
 

In this section, we describe the details of our structural model with HMM, where a user 

interacts with the community and decides his level of contribution.  

Modeling User Contribution as Public Goods 

In online communities, user contributions are public goods in nature, because they are 

voluntary, free and open. The key issue about public goods is free-riding, which means that 

everyone can share the benefits, but only the contributors incur the cost. Then under-provision 

is a common equilibrium in many pure altruism models (e.g., Andreoni 1988). It follows that 

online communities may eventually be depleted, suffered from the “tragedy of the commons.” 

But these models are not adequate to explain why large groups, such as the Wikipedia 
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community, are able to attract substantial user contributions. Such discrepancy between 

theoretical models and empirical phenomena may be reconciled by impure altruism models 

(e.g., Andreoni 1990; Benebou and Tirole 2006), where individuals contribute because they 

obtain utilities not only from pure altruism, but also from their own private benefits, such as 

signalling personal skills or the fulfilment of helping others.  

We use the public goods framework, particularly the impure altruism models, to model 

user contributions in an online community. Each self-interested user chooses how much to 

contribute. A user’s net utility consists of three parts: (1) his valuation of the accumulated 

contribution (e.g., knowledge) in the community, (2) his valuation of his own contribution, and 

(3) his cost of contribution. The first part captures the benefit the user could obtain from the 

community, as suggested by the pure altruism literature. The second part captures the impure 

altruism, corresponding to internalized extrinsic motivations that we have reviewed in the 

Literature Review Section. The third part suggests that making contribution is costly in terms 

of time and effort.  

Assuming additive separability of the above three parts, we specify the utility function of 

user i at time t as: 

 𝑈"# 𝑌"#, 𝑋"#,𝑊",#(), 𝑌*+ = 𝛾" 𝛿#(+𝑌*+

/0

*1)

#

+1)

+ 𝑓 𝑋"#,𝑊",#() ⋅ 𝑌"# −
1
2 𝑐"𝑌"#

9	, (1) 

where Yit is the contribution of user i at time t. Intuitively, a user gains utility from the 

accumulative knowledge in the community, and his own incremental contribution at present, 

net of his cost.  

We choose such a functional form following Chen et al. (2010). The first term on the right 

hand side captures user i’s valuation of the accumulated contribution of the community, in 

which 𝛾" is user i’s marginal benefit from the accumulated contribution, 𝑁+	is the number of 

users in the community at time 𝜏, and 𝛿 is a discount factor of the contribution stock. In the 
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second term, 𝑓 𝑋"#,𝑊",#()  captures user i 's valuation of his own contribution at time t. This 

could be viewed as a parsimonious version of the “image rewards” as in the prosocial behavior 

model (Bénabou and Tirole 2006), which will “depend on the informational and economic 

context, including what others are doing.” Therefore, this valuation could change over time 

with 𝑋"#, which is a vector of individual and community characteristics, and 𝑊",#(), which 

captures the community interactions in a vector. Essentially, in our model a user’s valuation of 

his own contribution could fluctuate because of his changing interactions with peers in the 

community. The third term is the cost function. We use a quadratic cost function to capture the 

convex cost of contributions (Gu et al. 2007). 

Using the first order condition of Equation (1) with respect to Yit, we obtain the 

equilibrium contribution of user i at time t as: 

 
𝑌"#∗ =

𝛾" + 𝑓 𝑋"#,𝑊",#()

𝑐"
	. (2) 

For analytical tractability, we assume that f (Xit, Wi,t-1) is linear in Xit conditional on motivation 

state 𝑠"#. And 𝑠"# is further determined by a latent transition propensity L(Wi,t-1) (details in the 

Transition Probabilities of Motivation States Section, below). We then obtain:  

 𝑌"#∗ = 𝑋"#@ 𝛽BCD + 𝜀"#, 𝜀"# 𝑋"#, 𝑠"# ~𝑁(0, 𝜎9) (3) 

where 𝑋"# is a vector of community and individual characteristics, the error term 𝜀"# follows 

a normal distribution with mean zero and variance σ2, and the individual marginal benefit 

parameter 𝛾" and cost coefficient 𝑐" are represented by a constant term and time-varying 

individual characteristics in 𝑋"#, and the error term 𝜀"#.  

Our goal is to estimate the coefficient vector 𝛽BCD, which captures the influence of vector 

Xit on the user’s contribution Yit. Note that vector 𝛽BCD depends on user i’s motivation state sit, 

which is associated with user i’s previous interactions with the community Wi,t-1. We detail the 

motivation states and their transitions in our model below. 
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Motivation States in HMM 

Our proposed HMM characterizes the dynamics of a user’s contribution as two stochastic 

processes: a process of observed contributions, and an underlying unobserved process of the 

user’s motivation states. We denote 𝑠"# the state of user i at time t. A user can have J hidden 

motivation states: 𝑠"# ∈ 𝑆 = {1, 2, … , 𝐽}. 

The hidden state captures the time-dependent feature of a user’s valuation of his own 

contribution, i.e., the strength of his motivation to contribute. If a user has high valuation of 

the contributions he provided to the community at time t-1 (i.e., in a high motivation state), 

he may also highly value his contributions at time t. Based on his state, a user responds 

differently to the community and individual characteristics (i.e., vector 𝑋"#). For example, if a 

user is in a high motivation state, he may be more likely to respond to new questions posted in 

the community. The observed contributions could be regarded as a noisy signal of the hidden 

state process. The hidden state and observed contributions together form a hidden Markov 

chain (Rabiner 1989).   

From time t-1 to t, a user may stay in one state, or switch to another. In our HMM, the 

state process 𝑠"# #QR is characterized as a first-order Markov chain with state space 𝑆 =

{1, 2, … , 𝐽}. Together with 𝑌"#, the observed contribution of user i at time t, we can model the 

vector-valued stochastic process (𝑌"#, 𝑠"#) as a hidden Markov chain. Its probability of 

transition from one period to the next can be factorized as: 

 𝑃 𝑌"#, 𝑠"# 𝑌",#(), 𝑠",#() = 𝑃 𝑌"# 𝑠"# ⋅ 𝑝 𝑠",#(), 𝑠"# ,	  

where 𝑝(𝑠",#(), 𝑠"#) is the transition probability from state 𝑠",#() to state 𝑠"#, and 𝑃(𝑌"#|𝑠"#) is 

the conditional probability describing the state-dependent contributions. We elaborate these 

two probabilities in the next two sub-sections, respectively.  
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Transition Probabilities of Motivation States 

A user can switch among all the possible states in 𝑆. The transition matrix 𝑃 𝑠",#(), 𝑠"#  

below characterizes the probability of such transitions: 

𝑃 𝑠",#(), 𝑠"# =

𝑝(1, 1) 𝑝(1, 2) … 𝑝(1, 𝐽)
𝑝(2, 1) 𝑝(2, 2) … 𝑝(2, 𝐽)
⋮ ⋮ ⋱ ⋮

𝑝(𝐽, 1) 𝑝(𝐽, 2) … 𝑝(𝐽, 𝐽)

 

where 𝑝(𝑗, 𝑘) is the transition probability from state j to state k, and 𝑝 𝑗, 𝑘Z = 1 for all 

𝑗, 𝑘 ∈ 𝑆. We assume that 𝑝(𝑗, 𝑘) is influenced by a user’s interactions with the community, 

which may create certain social or personal norms for the user (Bénabou and Tirole 2006). The 

user then evaluates his own contributions differently based on the norms. For instance, if all of 

his past contributions were voted up and appreciated, the user would be more likely to value his 

own contribution and remain highly motivated. Otherwise, he may switch to a lower 

motivation state. 

We model the transition probabilities with a probit model (Wooldridge 2010). We assume 

that the states are determined by a latent propensity of transition	𝐿"#: 

 𝐿"# = 𝑊",#()
@ 𝜉BC,D]^ + 𝑢"#,				 𝑢"# 𝑊",#(), 𝑠",#() ~𝑁(0, 𝜎`9) (4) 

such that 𝑠"# = 𝑗 if 𝐿"# ∈ [𝜇*(), 𝜇*), where 𝑊",#() is a vector of lagged variables related to 

the user’s previous interactions with the community, 𝜉BC,D]^ is a vector of the corresponding 

coefficients, and 𝑢"# is a normal error term from the probit model. In this model, the 𝜇* , 𝑗 =

1,… , 𝐽, are threshold values with 𝜇R normalized to negative infinity, 𝜇) to zero, and 𝜇c to 

infinity. The remaining cut-off points are assumed to satisfy 𝜇9 ≤ ⋯ ≤ 𝜇c() so that the 

cumulative probabilities are non-decreasing (Chib 2001). Note that 𝜉BC,D]^ is state-specific, 

capturing different effects of 𝑊",#() under different states. Then we obtain the transition 

probability as follows: 
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𝑝 𝑗, 𝑘 = 𝑃 𝑠"# = 𝑘 𝑠",#() = 𝑗,𝑊",#()  

= 𝑃 𝜇Z() ≤ 𝐿"# < 𝜇Z 𝑠",#() = 𝑗,𝑊",#() 	

= 𝑃 𝐿"# < 𝜇Z 𝑠",#() = 𝑗,𝑊",#() − 𝑃 𝐿"# < 𝜇Z() 𝑠",#() = 𝑗,𝑊",#() 	

= Φ
𝜇Z −𝑊",#()

@ 𝜉*
𝜎`

− Φ
𝜇Z() −𝑊",#()

@ 𝜉*
𝜎`

	, 

(5) 

where Φ is the standard normal distribution function. When a user first joins the community, 

we assume that he has an initial probability 𝑝* to be in motivation state 𝑗 and 𝑝*
c
*1) = 1.  

State-Dependent Contributions 

Given the states above, we now derive the conditional probability (𝑌"#|𝑠"#) to describe the 

state-dependent contributions. Since the observed user contributions are non-negative, we 

adopt the standard Tobit model (Wooldridge 2010) following the Bayesian literature (Rossi and 

Allenby 2003): 

 𝑌"#∗ = 𝑋"#@ 𝛽BCD + 𝜀"#, 𝜀"# 𝑋"#, 𝑠"# ~𝑁 0, 𝜎9 	
𝑎𝑛𝑑		𝑌"# = max(0, 𝑌"#∗),	 

 

where 𝑌"# stands for the observed contributions. Then the state-dependent contributions would 

follow the distribution below. The probability of making no contribution is 

 𝑃 𝑌"# = 0 𝑋"#, 𝑠"# = 𝑃 𝑌"#∗ ≤ 0 𝑋"#, 𝑠"# = 1 − Φ
𝑋"#@ 𝛽BCD
𝜎 .  

For 𝑌"# > 0, the probability density function is  

 𝑓 𝑌"# 𝑋"#, 𝑠"# =
1
𝜎 𝜙

𝑌"# − 𝑋"#@ 𝛽BCD
𝜎 ,  

where 𝜙 is the standard normal density function. With the transition probabilities and the 

state-dependent contributions specified, we now proceed to estimation and identification.  
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Analysis 

Estimation and Identification 

We estimate the state-dependent contribution parameters 𝛽BCD in equation (3), and the 

transition matrix coefficients 𝜉BC,D]^ in equation (4). Since 𝑠"# ∈ 𝑆, we essentially estimate 

the parameter vectors 𝜷 = (𝛽), … , 𝛽c) and 𝝃 = (𝜉), … , 𝜉c), where 𝜷 captures the effect of 

community and individual characteristics on the contributions, and 𝝃 captures the influence 

of community interactions on the user’s state transition probability. To estimate these key 

parameters, we also estimate the standard deviations 𝜎 and 𝜎`, as well as the state process 

𝑺 = 𝑠"# , 𝑡 = 1,… , 𝑇; 𝑖 = 1,… ,𝑁#. For ease of reference, we write the parameter space as 

𝜽 = {𝜷, 𝝃, 𝜎, 𝜎`} and 𝑺. Note that 𝜷 and 𝝃 are state-dependent, while 𝜎 and 𝜎` are not. 

We estimate our HMM using a Bayesian procedure developed by Kim and Nelson (1999). 

The Bayesian estimation algorithm treats 𝜽 and 𝑺 as random variables with prior 

distributions. The algorithm then updates their joint distributions 𝜋 𝜽, 𝑺 𝒀, 𝑿,𝑾)	using 

Gibbs sampling (Albert and Chib 1993). This updates the posterior distribution by 

incorporating the observed information from data.3  

Bayesian estimations of HMM models may encounter the “label switching” problem 

(Jasra et al. 2005), which means our posterior distribution of 𝜽 and 𝑺 may be invariant if 

we switch the labels. Since the motivation states in our context have self-evident economic 

interpretation, we adopt a normalization requirement that the constant terms in 𝛽* ∈ 𝜷 are 

ordered. Denote the constant term in 𝛽* as 𝑐*|. We permutate 𝜷 according to 𝑐*| such that 

𝑐)| ≤ ⋯ ≤ 𝑐c| in each draw of our Gibbs samplers. This requirement means that without any 

stimulus, a user in a high motivation state on average contributes more than if he were in a 

                                                   

3 Technical details of the sampling algorithm are in Appendix A1. 
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lower motivation state. This technique helps us identify the states in our model. 

Samples and Variables 

To test our structural model, we construct a user-date panel of the 2,147 users in 964 days 

from SuperUser. We exclude the first 100 days (with substantial fluctuation), and analyze the 

steady-state periods afterwards.4 Because of computational burden (over 2 million data points), 

we divide the sample into sub-samples that each contains 200 days. Our estimation focuses on 

the subsample in 101-300 days with 1,215 unique users, and 210,890 user-date observations. 

Table 1 presents the definitions of our variables and summary statistics. We use other 

sub-samples for robustness checks.  

Table 1.  Variables and Descriptive Statistics 

Variable Description Mean S.D. Min  Max 

Dependent Variable (Yit) 

 Answersit Number of answers 0.118 0.657 0 23 

Community and Individual Characteristics (Xit) 

 Matched_tags 
Number of tags matched between 
questions and the user’s profile 

27.061 23.894 0 225 

 Tenureit Number of days since the user registered 153.537 73.142 0 299 
 Total_answersi,t-1 Total number of past answers by the user 31.405 88.596 0 2018 
 Group_sizet Number of participating users  112.400 21.659 54 158 

Community Interactions (Wi,t-1) 

 Answers_receivedi,t-1 
Number of answers to past questions 
received by the user 

0.039 0.318 0 19 

 Upvotes_answeri,t-1 
Number of up-votes to past answers of the 
user  

0.177 1.006 0 37 

 Accepted_answersi,t-1 Number of accepted answers of the user  0.032 0.29 0 10 
 Badgesi,t-1 Number of badges earned by the user 0.022 0.177 0 10 

 

Our dependent variable is Answersit, which is the number of answers provided by user i at 

time t. We choose this dependent variable because among various ways to participate in the 

                                                   

4 We would like to thank the AE and an anonymous reviewer for the suggestion of focusing on steady-state analysis.  
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community, providing answers may be the most crucial because of the knowledge-sharing 

nature of the site. It is also the most challenging activity as it takes time and effort and requires 

certain domain expertise.   

We categorize two sets of explanatory variables that may affect users’ transition 

probabilities (W) and conditional contributions (X), respectively. The variables in vector W 

contain individual and community characteristics enabled by IT-artifacts that could have an 

enduring effect on a user’s motivation state. First, if a user’s questions are answered by others, 

he may be more likely to return to the site and may have higher chance to contribute. Moreover, 

he may be more likely to answer others’ questions out of reciprocity. We use the number of 

answers a user receives on his past questions (Answers_receivedi,t-1) to capture such reciprocity. 

Second, peer recognition can play a role in state transitions. When more answers provided by a 

user are voted up or accepted as the best answer, one may value his contribution higher because 

the contribution is appreciated by the community. This may transfer the user to a high 

motivation state so that he contributes even more. We measure these effects by the number of 

up-votes that a user receives on his previous answers (Upvotes_answeri,t-1), as well as the 

number of accepted answers of a user (Accepted_answersi,t-1). Third, self-image related 

motivation may also influence a user. To award users for their contributions, SuperUser grants 

users various badges, which serve as a signalling mechanism for a user’s self-image. To 

examine the effect of the badge system, we include Badgesi,t-1 as another explanatory variable, 

which represents the incremental number of badges earned by user i for his answers at time t-1.  

The variables in vector X contain individual and community characteristics that may have 

a direct effect on a user’s valuation of his contribution. First, the types of questions are diverse 

in the community and user expertise is different; whether a user can contribute his knowledge 

 Electronic copy available at: https://ssrn.com/abstract=3027723 



23 

 

depends on whether a question is within his domain.5 StackExchange uses tags, i.e., certain 

words or phrases, to identify the topics of each question and the expertise of each user. By 

sorting questions and users into specific, well-defined categories, tags are a means of matching 

experts with questions that they are able to answer. We calculate Matched_tagsit as the number 

of identical tags matched between the questions and the user i at time t. Matched_tagsit 

captures not only the demand for knowledge on the site, but also the feasible supply of 

knowledge specific to the user’s expertise.  

Second, the tenure of membership can affect a user’s contribution. As Figure 3(a) shows, 

users contribute less when they stay longer on the site. We use the days since user i registered 

(Tenureit) to account for this declining tendency of contributions over time. Third, we also 

include the total number of answers that have been provided by the user (Total_answersi,t-1). 

The rationale is that if a user has provided more answers in the past, he may also be more 

inclined to provide new answers in the current period. Fourth, we proxy the community size by 

Group_sizet, the number of users who participate in any activities at time t. Classic public 

goods models show that the average level of contribution decreases with group size, while in 

impure altruism models, the private benefits can increase with group size, as the enjoyment of 

contributing is enhanced by the number of recipients. We call this the social effect. As a group 

becomes larger, the motivation of pure altruism can decrease, while the social effect can 

increase. Given the importance of group size, we include it as a contextual factor in our 

analysis.  

Model Selection 

In our model specification, the number of states was not defined a priori. It instead needs 

to be estimated with the data. To estimate the number of states, we adopt several model 
                                                   

5 We would like to thank the editors and reviewers for pointing out this important feature.  
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selection criteria from the literature. Our selection criteria include the log-likelihood, the 

commonly used Akaike information criterion (AIC) and Bayesian information criterion (BIC) 

(Singh et al. 2011, Yan and Tan 2014), and the Markov switching criterion (MSC) which is 

specially designed for Markov switching models (Netzer et al. 2008).6 Given a set of candidate 

models for the data, the preferred model is the one with the minimum value of the selection 

criteria. 

We estimate models of different states, and report the results in Table 2. Our benchmark is 

the one-state static model, which assumes that a user stays in the same motivation state 

throughout, and thus his contribution behavior does not change over time.7 As Columns 2 – 5 

show, whereas the static model has the largest value, the three-state HMM has the smallest 

value in each selection criterion. Hence, all selection criteria suggest that HMM models with 

more than one state are superior to the static model, and particularly the three-state HMM is the 

best-fitting model that outperforms other models. Therefore, we report estimation results of the 

three-state HMM hereafter.  

Table 2.   Selection of the Number of States  

Number of states - 2*Log-likelihood AIC BIC MSC Number of Variables 
1 135,246.5 135,270.5 135,331.7 ------ 12 
2 134,065.9 134,111.9 134,229.3 345,144.4 23 
3 119,391.6 119,461.6 119,640.1 330,957.1 35 
4 120,577.6 120,671.6 120,911.4 333,159.2 47 

 

Estimation Results 

Table 3 reports the estimated parameters of the three-state HMM based on Bayesian 

estimation. For ease of discussion, we refer the three motivation states as low, medium, and 

                                                   

6 The technical details of calculating the log-likelihood and selection criteria are in Appendix A2. 
7 The static model follows the Heckman two-step estimation, with a participation equation and a contribution equation. We 
would like to thank an anonymous reviewer for suggesting this analysis.        
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high, denoted as L, M, and H, respectively. The coefficients in vectors 𝜷 and 𝝃 vary across 

states (the three columns), indicating that a change in states would lead to a change in 

contribution. The initial probabilities of being in L, M, and H states are 0.755, 0.216 and 0.029, 

respectively (bottom row). Hence, a new user tends to be in L state much more likely than in 

higher states. This confirms the importance of studying how to energize and motivate 

community members.  

Table 3.   Results of HMM Bayesian Estimation 

Variable Name 
State L 

(Low Motivation) 
State M 

(Medium Motivation) 
State H 

(High Motivation) 

Xit 𝜷 – Posterior Mean (Standard Deviation) 

𝑐| -3.053*** (0.064) 0.316*** (0.086) 7.072*** (0.312) 
Matched_tagsit 0.015*** (0.000) 0.022*** (0.001) 0.029*** (0.001) 
Tenureit -0.0004 (0.0003) -0.006*** (0.003) -0.016*** (0.001) 
Total_answersi,t-1 0.001*** (0.000) 0.002*** (0.000) 0.003*** (0.000) 
Group_sizet 0.003*** (0.000) 0.002*** (0.000) -0.010*** (0.002) 
𝜎9 1.011*** (0.005) 

Wi,t-1 𝝃 – Posterior Mean (Standard Deviation) 

𝑐} -1.651*** (0.024) -0.578*** (0.029) 1.118*** (0.135) 
Answers_receivedi,t-1 0.217*** (0.019) 0.021 (0.023) 0.013 (0.051) 
Upvotes_answeri,t-1 0.231*** (0.016) 0.109*** (0.013) 0.031 (0.028) 
Accepted_answersi,t-1 0.594*** (0.036) 0.235*** (0.023) 0.081*** (0.030) 
Badgesi,t-1 0.400*** (0.037) 0.201*** (0.036) -0.030 (0.058) 

Initial Probability 0.755*** (0.015) 0.216*** (0.014) 0.029*** (0.005) 

* p < 0.1, ** p < 0.05; *** p < 0.01. For brevity, we use “significant” and “insignificant” in the results 
discussion. 

 

State-dependent Contributions (𝜷)  

We first examine the state-dependent contributions (top panel in Table 3). The 

interpretation of the three states is determined by the state-specific intrinsic propensity to 

contribute (the constant vector 𝑐|), as discussed in the Estimation and Identification section. 

The estimates are -3.053, 0.316, and 7.072 for states L, M, and H, respectively (all significant at 

1% level). The relative large distances between states indicate that the states are well identified. 
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The coefficients of Matched_tags are 0.015, 0.022, and 0.029 for states L, M, and H, 

respectively (all significant at 1% level). The positive coefficients suggest that all users tend to 

supply more knowledge when the need arises and matches their expertise. Also, the increasing 

magnitude of the coefficients shows that as users move from L to M to H, they become more 

responsive to the demand for knowledge.   

For other individual characteristics, we find a negative relationship between Tenure length 

and user contributions. The negative coefficients in state M (-0.006, significant at 1% level) 

and state H (-0.016, significant at 1% level) suggest that users involved for a longer time tend 

to contribute less. It is possible that, all else being equal, the longer a user has been associated 

with the community, the more inertia (or lower incentives) he has in terms of contribution. 

Such a stalling effect poses another challenge to online communities.  

We also confirm that the answers a user contributed in the past have a positive 

relationship with how much he would contribute in the future. The highly significant 

coefficients of Total_answers for state L (0.001), M (0.002), and H (0.003) show that the 

effect of this variable increases as users moves from state L up to state H.  

Regarding Group_size, the coefficients are positive and significant in L (0.003) and M 

states (0.002). A user may contribute more when the community is larger, which confirms the 

“social effect” discussed before. Yet, this effect decreases as a user transitions from state L to M. 

As the user moves further up to state H, the community size is no longer a positive factor (-0.01, 

significant at 1%). This suggests that users in states L and M may put higher valuation on a 

larger community, while users in state H may be more susceptible to the free-riding problem.   

State Transition Probabilities (𝝃) 

We now turn to the effects of different motivating mechanisms on state transition 

probabilities (bottom panel in Table 3). The constant term 𝑐} is negative: -1.651 and -0.578 

for states L and M, respectively (both significant at 1% level). This indicates that in the absence 
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of motivating mechanisms, users in states L and M are likely to stay or transition to lower states. 

This once again reinforces the importance to have motivating mechanisms in place, or else the 

community will decline. 

Also, the more negative coefficient for users in state L suggests that they are more likely to 

be in L compared with users in M. In contrast, the constant term 𝑐} becomes positive in state 

H (1.118, significant at 1% level). Users in H state tend to remain highly motivated. 

Overall, users in all three states seem to benefit from the motivating mechanisms through 

their interaction with the community. However, different mechanisms have different impacts 

on the motivation conditional on a user’s current state. When comparing the coefficients 

corresponding to each motivating mechanism across the three states, we can see that the 

mechanisms are the most effective among the low-state users. This is also precisely the user 

state that needs to be activated by the online community. Such finer-grained results were not 

revealed in the prior literature.  

Specifically, reciprocity seems to be effective only for the least motived users. For users in 

state L, receiving more answers on their previous questions tends to help transfer them into 

higher states (0.217, significant at 1% level). The coefficient becomes insignificant in states M 

and H. They tend to contribute anyway, less because they want to return the favour of their 

peers. Hence, reciprocity can be more useful to stimulate low-state users.  

For peer-recognition, the coefficients on Upvotes_answer and Accepted_answers are all 

positive and mostly significant (rows 3-4 in the bottom panel). We interpret this result as the 

verification of one’s identity. When a user receives more up-votes or has more answers 

accepted, he may feel the value of his contribution being recognized and thus his identity in the 

community validated. Further, this identity-verification effect is more prominent in lower 

states, and declines as a user moves to H. For instance, Accepted_answers motivates users in 

state L (0.594, significant at 1%) the most, followed by state M (0.235, significant at 1%), and 
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then state H (0.081, significant at 1%). This indicates that the marginal effect of accepted 

answer diminishes as a user moves to higher motivation states. The pattern is similar for 

Upvotes_answer. Together, these results highlight the effectiveness of peer recognition as a 

motivating scheme to enhance self-identity, especially for users in low state.   

Likewise, we find the effectiveness of badges to strengthen self-image motivation. 

Earning more badges seems to lift a user from states L and M to state H (coefficients are 0.400 

and 0.201, significant at 1% level). The effect of badges becomes insignificant for users in H. 

This seems to suggest that highly motivated users are insensitive to badges; earning badges 

may not help them verify their self-identity. This may be due to the “moral licensing” effect of 

pro-social behavior. If so, using badge system to motivate user contributions should be gauged 

carefully, despite the fact that badges are widely used in many online communities. To retain 

users in H state, community managers need to design more effective mechanisms. This could 

be an interesting area for future research.  

Transition Matrices and Marginal Effects 

We substitute the estimates from Table 3 into equation (5) to calculate the transition 

probabilities among states. Transition matrix (a) in Table 4 presents the transition probabilities 

evaluated at the mean level of community interactions (from column “Mean” in Table 1). The 

transition probabilities are substantially different when a user is in L, M or H states. This 

confirms that modelling the stochastic process with the three hidden states is reasonable. 

Further, the matrix indicates the stickiness of state L. Once a user is in this state, he is most 

likely to be trapped, and even if a user starts off in state H, he also tends to slip down to M and 

then to L. This implies the challenge of inherent deteriorating participation as we posed earlier, 

and the importance of stimulating users to become more motivated.  
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Table 4.  Mean Posterior Transition Matrices 

 (a) Mean Interactions  (b) Up-votes 

t-1 to t L M H  L M H 

L 94.2 5.8 0.0  91.0 8.9 0.0 
M 70.8 28.8 0.4  66.9 32.5 0.6 
H 13.1 69.7 17.2  13.1 69.7 17.2 

 (c) Accepts  (d) Badges 

t-1 to t L M H  L M H 

L 83.6 16.3 0.1  88.0 12.0 0.0 
M 62.2 36.9 0.8  63.5 35.7 0.8 
H 11.5 69.2 19.3  13.1 69.7 17.2 

Note: All numbers are probabilities (%). 

 
To quantify the marginal effect of each motivating mechanism on transition probability, we 

calculate the transition probabilities when the mean value of a variable increases by one unit, 

while holding other variables constant. The matrices (b) – (d) in Table 4 show the transition 

probabilities caused by such a change in up-votes, accepts and badges, respectively. We focus 

on up-votes, accepts and badges, because they are the mechanisms that platform designers 

could manage. For example, if the community decreases the cost of up-votes or even enhances 

the incentives of up-votes, the number of up-votes is likely to increase. If the platform designer 

changes the setup such that each question could accept multiple answers, then the mean of 

accepted answers is likely to increase. Further, because online communities provide various 

kinds of badges to users, a more careful design of the badge system may help elevate the user 

contributions. 

We can then take the difference between respective cells of (a) and (b) – (d) to calculate the 

marginal effect on transition probability. For example, in matrix (b), receiving one additional 

up-vote on average hypothetically increases the probability of transitioning from state L to state 

M by 3.1% (from 5.8% to 8.9%), while a user in state M would increase his likelihood of 

staying in the state from 28.8% to 32.5%, and that of switching to state H from 0.4% to 0.6%. 

Similarly, in matrix (c), one additional accepted answer could increase the transition 
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probability from state L to state M by 10.5% (from 5.8% to 16.3%), and increase the probability 

of staying in state M by 8.1% (from 28.8% to 36.9%). It also increases the transition probability 

to state H by 0.1%, 0.4% and 2.1% for users in state L, M, and H, respectively. Such changes 

are non-trivial because the low motivation state tends to be sticky. With more than 200 up-votes 

and 30 accepted answers each day on SuperUser, the effects of these mechanisms significantly 

enhance the contributions at the community level.  

Design Simulations 

We now turn to the normative perspective on motivating mechanisms using design 

simulations.8 We do three simulation experiments to see if platform designers can encourage 

more contributions by strengthening users’ internalized extrinsic motivations through 

calibrating specific IT-artifacts: up-votes received for answers, accepted answers, and badges. 

If it becomes easier to enhance peer recognition and self-image through each of these channels, 

are users going to provide more answers? We hypothetically double the value of the variables 

Upvotes_answer, Accepted_answers, and Badges, making it twice as easy to earn each reward. 

We then simulate, under each scenario, the evolution of the total number of answers and users 

in state M and state H over time.  

Figure 5 presents the results, which are the average of 100 simulation iterations for each 

user on each date. The first column (graphs 1, 4, and 7) shows the simulated total number of 

answers (grey dots) versus the actual total number of answers (black dots) for the doubled 

Upvotes_answer, Accepted_answers, and Badges, respectively. To better illustrate the effects 

and trends, we fit the simulated answers with a dash curve and the actual answers with a solid 

curve. Both curves are smoothed. In the second column (graphs 2, 5, and 8), we plot the 

                                                   

8 These simulation experiments correspond to “counterfactual experiments” in the empirical industrial organization 
literature (Reiss and Wolak 2007). In a structural model, if we specify a counterfactual antecedent (an event/parameter 
different from the real observations), then we can evaluate the counterfactual consequent (a result that is expected to hold if 
the antecedent were true). Such analysis is often used for policy evaluation. 
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number of users who are in state M. Similarly, the solid line shows users in state M under the 

current design, and the dashed lines show simulated users in state M if we were to change the 

corresponding motivation mechanism. In the third column, we plot the number of users who 

are in state H in a similar way. 

 
Figure 5.  Design Simulations: What if rewards are easier to earn? 

 

We discover three patterns here. First, the simulated number of answers is greater than the 

actual data in all three cases. This means that when it becomes easier to receive rewards to 

enhance one’s internalized extrinsic motivation (through up-votes, accepted answers or 

badges), users will contribute more. Second, up-votes and accepted answers seem to be more 

effective than badges, which may be due to the “moral licensing” effect of badges in high 

motivation state. However, as a design mechanism, badges are much easier to change than 

up-votes and accepted answers. To test the effectiveness of different badges, a platform 

designer could potentially examine the simulated experiment on many specific badges. Third, 

highly motivated users are critical to the knowledge contribution and accumulation in the 

online community. The actual number of users in state H is relatively small, and it also declines 
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slightly. The stimulation of more up-votes, accepted answers, and badges not only boost the 

number of these users in state H, but also smooth the declining trend.    

 Together, our experiments suggest that it is important for platform designers to manage 

internalized extrinsic motivation, so as to encourage users to contribute more. Note that we are 

not suggesting a constant effect of these mechanisms; as we change the design of the 

community, the perception of the users may change accordingly. Rather, our design simulation 

opens up a direction for further exploration. 

Robustness Checks 

We conduct several robustness checks and provide the detailed results in Appendix A4. 

First, to ensure that our results are not biased by the sample period, we estimate the model on 

several alternative steady-state sample periods (e.g., 301-500 days). The results from those 

estimations are consistent to the results reported above. We also examine the first 100 days, 

where there is substantial fluctuation of user activities. Compared with the steady periods, the 

magnitude of coefficients across states do not have an evidently different pattern.  

Second, to probe deeper into the possible heterogeneity of users and questions, we test 

the following variables in our model: 1) Special roles of users. Some users are elected as 

moderators, which may explain their higher contribution. We include a binary indicator of 

whether a user is a moderator, and find its coefficient is only significant in states M and H. 

Hence, on average a moderator is more likely to be in higher motivation states. 2) Questions 

from influential users. Questions from influence users, such as moderators, can motivate 

users to contribute. We construct a variable to measure how many questions are asked by 

moderators. The coefficient on this variable is insignificant across all states, suggesting that 

the overall contribution of users is insensitive to whether or not the question comes from 

influential individuals. These analyses provide additional insights, while our main results 
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remain consistent as before. 

Third, we conduct robustness checks on different time aggregations and user samples. 

We aggregate daily data into weekly to smooth any possible fluctuation during a week (e.g., 

weekday vs. weekend effect). Results on weekly data are consistent with the daily analysis. 

To alleviate computational burden, results presented so far are based on a sample with users 

that have contributed more than 10 answers during the sample period. We also estimate the 

model separately on all users on the site, users who have contributed at least one answer, and 

those with more than 50 answers, respectively. The results are consistent. 

Conclusions 

User contributions are voluntary but vital in many online communities. This paper studies 

the effects of motivating mechanisms on voluntary contributions through IT-artifacts design 

from a dynamic perspective. Using a hidden Markov model under the public goods framework, 

we identify three motivation states that increase in the propensity of contribution, and 

investigate the effect of several types of mechanisms (reciprocity, peer recognition, and 

self-image) on transitioning users between the states.  

This dynamic perspective is a unique feature of our work. The existing literature relies on 

a conventional static approach, which implicitly assumes that the relationship between 

motivating mechanisms and user contributions is static. In contrast, our dynamic approach 

allows the effect of motivating mechanisms to change across users and over time. As such, our 

approach advances the literature on voluntary user contributions in online communities. It also 

enriches the literature on public goods that features in impure altruism and internalized 

extrinsic motivations.  

 Our results from the dynamic model shed light on a key question in the research on online 

communities, i.e., how to design effective IT artifacts that can engage users to contribute. We 

find that IT artifacts (e.g., up-votes, accepted answers, and badges) as motivational devices are 
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useful to elevate contributions, but their influence varies significantly with motivation states. 

Although badges are widely used in practice, they can be ineffective for users in high 

motivation state. Hence, the design of badge system (or gamification in a broader sense) 

deserves careful consideration. In contrast, up-votes and accepted answers are shown to be 

much more effective across motivation states. These results highlight the effectiveness of peer 

recognition as a motivating scheme, especially in switching users to and retaining them in 

higher motivation states. 

Our results provide important managerial implications for devising various mechanisms, 

and evaluating their effectiveness on encouraging user contribution. First, managers need to be 

mindful that users have a different propensity to contribute, and it is crucial to design proper 

instruments to motivate contributions. The changing influence of peer-recognition in different 

states suggests that community managers can gear their intervention towards users in specific 

motivation states. For example, if the goal is to induce more users to be in high motivation state, 

then encouraging users to accept high quality answers may be a more effective intervention 

than adding more badges. Second, our structural model allows community managers to 

perform interesting design simulations and evaluate the consequence of changing certain 

mechanisms. As our design simulations suggest, if the design of the community makes it easier 

for users to gain up-votes or accepted answers, for example by allowing users to accept more 

than one answer of high quality, then users are more likely to become highly motivated. A 

platform designer can also experiment with a specific badge and decide how to adjust it. Third, 

managers should also consider how to foster the community. It would be helpful to attract new 

users to make the “social effect” more prominent, and encourage users to ask questions to raise 

the “demand of knowledge.” The estimated hidden states from our model allow community 

managers to classify users in real time and help them target the right kinds of users.  

Our dynamic framework would help motivate future work on the design of IT artifacts in 
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online communities. First, while we use a knowledge sharing community as a testing field, our 

framework is applicable to many other online communities relying on voluntary user 

contributions. One may caution that there are other design features unavailable in our contexts. 

However, our dynamic framework, with appropriate modifications under specific research 

context (especially the utility function), can be extended to other settings. Second, our findings 

point to several interesting avenues of future research. For instance, the insignificant effect of 

badges in high motivation state implies that there may be too many trivial badges in the system. 

It would be interesting to identify the types of badges that are truly effective. Another example 

is that from our analysis, we cannot conclude the changing effectiveness of motivating 

mechanisms across the lifecycle of the community. A more in-depth study along this line may 

generate interesting implications in the future.  

More broadly, this research is related to open models of co-production in user 

communities over time. Our study informs the design of internalized extrinsic mechanisms in 

contexts such as crowdsourcing, user generated contents, open innovation, and even 

crowdfunding. As data become available, future research may expand into these broader areas. 

In such environments, production moves beyond the boundary of traditional, formal 

organizational structure, and voluntary contributions facilitated by IT artifacts become crucial. 

New challenges such as the design of motivating mechanisms in a dynamic environment need 

to be managed, so that the co-production of open communities can be sustainable (Zhu and 

Zhou 2012). Our paper, although currently examined in a knowledge sharing community, may 

generate new insights into designing IT artifacts to engage voluntary contributions in online 

communities without formal governance or compensation structures in the traditional sense. 

While many open questions remain, we hope our analysis framework and initial findings will 

help stimulate more research in this growing area.  
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A1. The MCMC Estimation of the HMM 

We estimate the parameters vector {𝜃, 𝑆} with Gibbs sampling (Albert and Chib 1993). 

Suppose we have motivation state 𝑠"# ∈ {1, 2, … , 𝐽} in our model. We generate the joint 

posterior distribution by sampling from each conditional distribution of the following 

parameter blocks:  

𝜽 = 𝜃), 𝜃9@ , 𝜃�@ , 𝜃�@ , 𝜃�@ @	

𝜃) = 𝜎(9	

𝜃9 = 𝛽)@, 𝛽9@ , … , 𝛽c@
@	

𝜃� = 𝜉)@ , 𝜉9@ , … , 𝜉c@
@	

𝜃� = 𝜇9, 𝜇�, … , 𝜇c()
@		

𝜃� = 𝐿"#, 𝐿"9, … , 𝐿"� @, 𝑖 = 1,… , 𝑛	

𝜃� = 𝑠"), 𝑠"9, … , 𝑠"� @, 𝑖 = 1,… , 𝑛 

For the simplicity of presentation, we denote 𝜃(" = 𝜃*@
@, ∀𝑗 ≠ 𝑖 below. 

(1) Sample 𝜃) = 𝜎(9 from 𝑃(𝜃)|𝜃(), 𝑌, 𝑋,𝑊). 

Prior: 𝜎(9~Γ	(𝛼, 𝛿). Conditional on 𝜃(), 𝑌, 𝑋, and 𝑊, it is equivalent to observing 

{𝜀��} where 𝜀"# = 𝑌"# − 𝑋"#𝛽BCD.   

Posterior: 𝜎(9 𝜃(), 𝑌, 𝑋,𝑊 ~Γ	(𝛼 + )
9
𝑛𝑇, 𝛿 + )

9
𝑆𝑆𝑅), where 𝑆𝑆𝑅 = 𝜀"#9�

#1)
�
"1) .  

(2) Sample 𝜃9 = 𝛽)@, 𝛽9@ , … , 𝛽c@
@
 from 𝑃(𝜃9|𝜃(9, 𝑌, 𝑋,𝑊). 

Prior: 𝛽� 𝜎(9 	~	𝑁(𝑚*,𝑀*), 𝑗 = 	1, … , 𝐽 (independent of each other) 

Posterior: Conditional on {𝑠"#}, only those observations for which 𝑠"# = 𝑗 are relevant 

to posterior distribution of jβ : 𝛽� 𝜃(9, 𝑌, 𝑋,𝑊 ~𝑁(𝑚*
∗,𝑀*∗), where  

𝑀*∗ = 𝑀*() + 𝜎(9 𝑋"#𝑋"#@
�

#1)

1 BCD1*

�

"1)

()

	 

and 

𝑚*
∗ = 𝑀*∗ 𝑀*()𝑚* + 𝜎(9 𝑋"#𝑌"#

�

#1)

1 BCD1*

�

"1)

. 

(3) Sample 𝜃� = 𝜉)@ , 𝜉9@ , … , 𝜉c@
@
 from 𝑃(𝜃�|𝜃(�, 𝑌, 𝑋,𝑊). 

Prior:	ξ*	~	𝑁(𝑚𝑤*,𝑀𝑤*), 𝑗 = 	1, … , 𝐽.  

Posterior:  𝛽� 𝜃(�, 𝑌, 𝑋,𝑊 ~𝑁(𝑚𝑤*∗,𝑀𝑤*∗), where  
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𝑀𝑤*∗ = 𝑀𝑤*() + 𝑊",#()𝑊",#()
@

�

#1)

1 BC,D]^1*

�

"1)

()

	 

and  

𝑚𝑤*∗ = 𝑀𝑤*∗ 𝑀𝑤*()𝑚𝑤* + 𝑊",#()𝐿"#

�

#1)

1 BC,D]^1*

�

"1)

. 

Note that since 𝜎`9 is not identifiable, we normalize it to 1 in the estimation. 

(4) Sample 𝜃� = 𝜇9, 𝜇�, … , 𝜇c()
@
 from 𝑃 𝜃� 𝜃(�, 𝑌, 𝑋,𝑊 . 

Albert and Chib (1993) provide the posterior for 𝜇* given the other threshold 

parameters 𝜇Z, 𝑘 ≠ 𝑗. For each 𝜇*, let 𝐿𝑜𝑤𝑒𝑟 = max max 𝐿"#: 𝑠"# = 𝑗 , 𝜇*()  and 

𝑈𝑝𝑝𝑒𝑟 = min	{min 𝐿"#: 𝑠"# = 𝑗 + 1 , 𝜇*�)}. Then we can sample 𝜇* from the uniform 

distribution 𝑈[𝐿𝑜𝑤𝑒𝑟, 𝑈𝑝𝑝𝑒𝑟]. 

(5) Sample 𝜃� = 𝐿"), 𝐿"9, … , 𝐿"� @, 𝑖 = 1,… , 𝑛 from 𝑃(𝜃�|𝜃(�, 𝑌, 𝑋,𝑊). 

𝐿"# determines 𝑠"# according to the following formula: 

𝑠"# = 𝑗	𝑖𝑓	𝜇*() < 𝐿"# < 𝜇*, 

where 𝜇R = −∞, 𝜇) = 0, 𝜇c = ∞, and 𝜇9, … , 𝜇c() are given in step (4). Conditional 

on 𝜃(�, we can generate 𝐿"# from a truncated normal distribution 

𝑇𝑁 ��]^,�� 𝑊",#()𝜉BC,D]^, 1 , 

which is a normal distribution with mean 𝑊",#()𝜉BC,D]^ and variance 1, and truncated left at 

𝜇*() and right at 𝜇*. Repeating this for 𝑡 = 1,… , 𝑇 and 𝑖 = 1,… , 𝑛 gives a draw from 

𝑃(𝜃�|𝜃(�, 𝑌, 𝑋,𝑊). 

(6) Sample 𝜃� = 𝑠"), 𝑠"9, … , 𝑠"� @, 𝑖 = 1,… , 𝑛 from 𝑃(𝜃�|𝜃(�, 𝑌, 𝑋,𝑊). 

We generate the states using the single-move Gibbs-sampling algorithm in Kim and 

Nelson (1999), which is also the well-known Forward-Backward algorithm. Denoting 𝛹"# as 

information for user 𝑖 up to time 𝑡, and 𝛹"� as information from the whole sample, we 

follow the forward-backward algorithm as below to obtain 𝑃(𝑠"#|𝑆",(#, 𝛹"�):  

(a) Forward: Calculate 𝑃(𝑠"#|	𝛹"#). 

Step 1: Given 𝑃 𝑠",#() = 𝑘 𝛹",#() , 𝑘 = 1,… , 𝐽 at the beginning of period t, calculate 

𝑃 𝑠"# = 𝑗, 𝑠",#() = 𝑘 𝛹",#() = 𝑃 𝑠"# = 𝑗 𝑠",#() = 𝑘,𝛹",#() 𝑃 𝑠",#() = 𝑗 𝛹",#() , where 

𝑃 𝑠"# = 𝑗 𝑠",#() = 𝑘, 𝛹",#() =
𝛷 𝜇) − 𝑊",#()𝜉Z , 𝑖𝑓	𝑗 = 1

𝛷 𝜇* − 𝑊",#()𝜉Z − 𝛷 𝜇*() − 𝑊",#()𝜉Z , 𝑖𝑓	𝑗 = 2, … , 𝐽 − 1
1 − 𝛷 𝜇*() − 𝑊",#()𝜉* , 𝑖𝑓	𝑗 = 𝐽

	. 
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For the first period, we use the initial probability 𝑃 𝑠") = 𝑗 = 𝑝* for 𝑗 = 	1, … , 𝐽, which are 

sampled from a Dirichlet distribution. 

Step 2: Once 𝑋"# and 𝑌"# are observed in period 𝑡, we update the probability term by 

calculating 𝑃 𝑠"# = 𝑗 𝛹"#) = 𝑃(𝑠"# = 𝑗, 𝑠",#() = 𝑘|𝛹"#)
c
Z1) , where  

𝑃 𝑠"# = 𝑗, 𝑠",#() = 𝑘	 	𝛹"# 	

= 𝑃 𝑠"# = 𝑗, 𝑠",#() = 𝑘	 	𝛹",#(), 𝑋"#, 𝑌"#)	

=
𝑓 𝑌"# 𝑠"# = 𝑗, 𝑠",#() = 𝑘,𝛹",#(), 𝑋"# 𝑃 𝑠"# = 𝑗, 𝑠",#() = 𝑘 𝛹",#()

𝑓 𝑌"# 𝛹",#(), 𝑋"#
	

∝ 𝑓 𝑌"# 𝑠"# = 𝑗, 𝑋"# 𝑃 𝑠"# = 𝑗, 𝑠",#() = 𝑘 𝛹",#() 	. 

(b) Backward: In the backward process, we generate 𝑠"# conditioning on 𝛹"# and 

𝑠",#�)	(𝑡 = 𝑇 − 1, 𝑇 − 2,… , 1) using 𝑔(𝑠"#|𝛹"#, 𝑠",#�)) ∝ 𝑔 𝑠",#�) 𝑠"#, 𝛹"# 𝑔(𝑠"#|𝛹"#). We 

then can calculate 

𝑃 𝑠"# = 𝑗 𝑠",#�), 𝛹"# =
𝑔 𝑠",#�) 𝑠"# = 𝑗, 𝛹"# 𝑔(𝑠"# = 𝑗|𝛹"#)
𝑔 𝑠",#�) 𝑠"# = 𝑘,𝛹"# 𝑔(𝑠"# = 𝑘|𝛹"#)

c
Z1)

	. 

Then we can use a random number drawn from a uniform distribution to generate 𝑠"# 

according to 𝑃(𝑠"#|𝑆",(#, 𝛹"�). 
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A2. Log-likelihood and Model Selection Criteria 

As detailed in Appendix A1, we estimate the parameters in our HMM with Bayesian 

estimation, which does not require us to calculate the likelihood. However, to select the 

number of states, the selection criteria would rely on the likelihood. Therefore, we describe 

the calculation of the likelihood of an observed sequence of contributions and the selection 

criteria below. 

Log-likelihood Calculation 

Because we adopt a hidden Markov model, the contribution probabilities for each 

individual over time are correlated through the hidden states. The joint likelihood of each 

individual’s contribution sequence has to consider the possible paths of the underlying states 

(Netzer et al. 2008). Suppose that there are 𝐽 possible states. Then according to MacDonald 

and Zucchini (1997), we can write the joint probability using a matrix product as  

𝑃" 𝑌") = 𝑦"), … , 𝑌"� = 𝑦"� = 𝑃R𝛺" 1 𝑄" 1, 2 𝛺" 2 ⋯𝑄" 𝑇 − 1, 𝑇 𝛺" 𝑇 𝟏@,	 

where 𝑃R is the initial probability, 𝛺"(𝑡) is a 𝐽×𝐽 diagonal matrix with the elements of 

emission probability 𝜔"#|* = 𝑓(𝑌"#|𝑋"#, 𝑠"# = 𝑗; 𝜷, 𝜎9) on the diagonal, 𝑄"(𝑡 − 1, 𝑡) is the 

𝐽×𝐽 transition matrix for individual 𝑖 at time 𝑡 with the elements of 𝑞" 𝑘, 𝑗 =

𝑓 𝑠"# = 𝑗 𝑊",#(), 𝑠",#() = 𝑘; 𝝃  on the 𝑘#§ row and 𝑗#§ column, and 𝟏@ is a 𝐽×1 vector 

of ones. The element probabilities are obtained according to our model setup: 

𝜔"#|* = 𝑓 𝑌"# 𝑋"#, 𝑠"# = 𝑗; 𝜷, 𝜎9 = 1 − 𝛷
𝑋"#@ 𝛽*
𝜎

) ¨CD1R 1
𝜎 𝜙

𝑌"# − 𝑋"#@ 𝛽*
𝜎

) ¨CD©R

, 

and  

𝑞" 𝑘, 𝑗 = 𝑓 𝑠"# = 𝑗 𝑊",#(), 𝑠",#() = 𝑘; 𝝃 = 𝛷 𝜇*�) −𝑊",#()𝜉Z − 𝛷 𝜇* −𝑊",#()𝜉Z . 

Then we can write the log-likelihood as ln 𝐿 = log	(𝑃")" . 

Selection Criteria 

We adopt three model selection criteria to determine the number of states in our HMM. 

First, we use the commonly used Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) (Singh et al. 2011, Yan and Tan 2014): 

𝐴𝐼𝐶 = −2 ∗ ln 𝐿 + 2 ∗ 𝑠𝑖𝑧𝑒, 

and 
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𝐵𝐼𝐶 = −2 ∗ ln 𝐿 + 𝑠𝑖𝑧𝑒 ∗ ln𝑁, 

where size is the number of parameters in the model, and N is the number of users in the 

sample. Second, realizing that we are using a Bayesian estimation for our HMM, we also 

adopt Markov switching criterion (MSC), which was developed for HMM’s state and 

variable selection (Smith et al. 2006). We follow the adaptation in the literature for its 

formulation (Netzer et al. 2008): 

𝑀𝑆𝐶 = −2 ∗ ln 𝐿 +
𝑇B 𝑇B + 𝐽 ∗ 𝐾
𝑇B − 𝐽 ∗ 𝐾 + 2

c

B1)

, 

where 𝑇B = 𝑃(𝑠"# = 𝑠)/D
"1)

�
#1) , 𝐽 is the number of states in the model, and 𝐾 is the 

number of covariates in both the transition matrix and the state-dependent vector.  
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A3. Testing the Estimation on Simulated Data 

Because our model has a non-linear feature by incorporating the Tobit and probit models, 

we could not use standard statistical software to estimate it. We have to write our own 

estimation algorithm instead. Hence we did, but we need to ensure that it is correct before 

applying the algorithm to the actual data. We run the algorithm on simulated data based on 

known parameters, and test whether it could recover the “true” parameters. Because there is 

some model uncertainty on the number of states in our HMM, we also simulate data with 2, 3, 

and 4 “true” states, and then estimate the model with 2, 3, and 4 states in HMM. Then we use 

the model selection criteria to determine whether our algorithm points out the “true” number 

of states. Here we use three “true” states as an example. 

We first generate the “true” parameters 𝜽, the community and individual characteristics 

variables 𝑋 = 𝑋"# #1),…,�;"1),…,/D, and the community interaction variables 𝑊 =

𝑊"# #1),…,�;"1),…,/D with three motivation states (𝐽 = 3). Since we assume that a user has an 

initial probability 𝑃R = {𝑝), 𝑝9, 𝑝�}, at 𝑡 = 1 we draw the initial state 𝑠") of user 𝑖	from a 

Dirichlet distribution using the initial probability 𝑃R for each user 𝑖 that enters the 

community. Conditional on 𝑠"), we then draw the contribution 𝑌") = max(0, 𝑌")∗ ), where 

𝑌")∗ = 𝑋"#𝛽BC^ +	𝜀") and 𝜀") is generated from a normal distribution with mean 0 and 

variance σ2. For any t >1, we first draw 𝐿"# = 𝑊",#()𝜉BC,D]^ + 𝑢"#, where 𝑢"# is drawn from 

𝑁(0, 1). Then we generate the new state 𝑠"# according to 𝐿"#. Repeating the same process, 

we generate 𝑌 = 𝑌"# #19,…,�;"1),…,/D for all 𝑡.  

With the simulation data {X, W, Y}, we estimate the model with our procedure and 

present the results in Table A3.1. Our simulation data contains 322 individuals and 20 periods 

of time. The true number of states is 𝐽 = 3. The community and individual characteristics 

vector X contains four variables, and the community interaction vector W contains four 

variables. In Table A3.1, the “True Parameters” panel on the left displays the original 

parameters 𝜃 = {𝛽, 𝜉, 𝜎9}	that we employ to generate the simulation data. The “Estimation” 

column on the right displays the estimated parameters. Our estimation recovers the “true” 

parameters accurately.  

We also present the model selection criteria in Table A3.2. Given the “true” state number 

is three, all our model selection criteria indicate that our HMM model with three states fit the 

data the best. This confirms the reliability of the estimation algorithm, and gives us 

confidence in its empirical application to the actual data.   
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Table A3.1. Estimation Results from Simulation Data (Number of States = 3) 

 
True Parameters  Estimation 

Variables State 1 State 2 State 3  State 1 State 2 State 3 

𝜷 
  

  Mean (Standard Deviation) 

𝑥) 3 5 7  2.98 (0.07) 4.99 (0.07) 6.99 (0.03) 
𝑥9 4 6 8  4.00 (0.02) 6.02 (0.01) 8.01 (0.01) 
𝑥� 5 7 9  4.99 (0.02) 7.00 (0.02) 8.98 (0.01) 
𝑥� 6 8 10  6.00 (0.02) 8.00 (0.01) 10.01 (0.01) 
𝜎9 1.5  1.53 (0.03) 

𝝃 
  

     

𝑤) -1.5 -0.5 0.5  -1.63 (0.13) -0.48 (0.08) 0.42 (0.06) 
𝑤9 1.15 0.37 2.53  1.18 (0.11) 0.27 (0.08) 2.57 (0.14) 
𝑤� 6.32 4.48 7.35  6.53 (0.29) 4.41 (0.22) 7.67 (0.44) 
𝑤� 2.65 3.05 6.96  2.73 (0.15) 3.10 (0.12) 7.04 (0.17) 
𝜇*  2    1.95 (0.04)  
𝜎`9 1  1 

𝑃R = {𝑝*} 0.45 0.40 0.15  0.44 (0.02) 0.41 (0.03) 0.15 (0.020) 

T = 20 N = 322 Draws = 2,000      
 

 
 

Table A3.2. Selection of Number of States from Simulation Data (Number of States = 3) 

Number of States - 2*Log-likelihood AIC BIC MSC Number of Variables 

2 35404.87 35442.87 35514.59 41380.24 19 
3 22700.68 22758.68 22868.14 22700.68 29 
4 22734.37 22812.37 22959.57 30211.52 39 
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A4. Robustness Checks 

We conduct several sets of robustness checks. First, we estimate the model on another 

sample period (301-500 days). The results are in Table A4.1. Second, we examine whether 

the moderator role of a user or new questions by the moderators in the community would 

affect the transition probability of a user. We control for these two factors separately in 𝑊"#, 

and present the results in Table A4.2 and Table A4.3, respectively. Lastly, we estimate the 

model on weekly data and include the results in Table A4.4.  

Table A4.1.   Results of HMM on Daily Data for Day 301-500 Subsample 

Variable Name 
State 1 

(Low Motivation) 
State 2 

(Medium Motivation) 
State 3 

(High Motivation) 

Xit β – Posterior Mean (Standard Deviation) 

𝑐| -2.791*** (0.071) -0.103 (0.091) 4.735*** (0.330) 
Matched_tagsit 0.015*** (0.001) 0.029*** (0.001) 0.046*** (0.002) 
Group_sizet 0.001*** (0.000) 0.006*** (0.000) 0.013*** (0.002) 
Tenureit -0.001*** (0.000) -0.004*** (0.000) -0.01*** (0.001) 
Total_answersi,t-1 0.0002*** (0.000) -0.0003*** (0.000) -0.001*** (0.000) 
𝜎9 1.009*** (0.005) 

Wi,t-1 ξ – Posterior Mean (Standard Deviation) 

𝑐} -1.752*** (0.035) -0.644*** (0.043) 0.941*** (0.114) 
Answers_receivedi,t-1 0.268*** (0.019) 0.049* (0.026) -0.117 (0.077) 
Upvotes_answeri,t-1 0.262*** (0.020) 0.117*** (0.014) 0.021 (0.028) 
Accepted_answersi,t-1 0.562*** (0.037) 0.300*** (0.024) 0.084** (0.035) 
Badgesi,t-1 0.250*** (0.053) 0.275*** (0.040) -0.095* (0.058) 

Initial Probability 0.797*** (0.017) 0.186*** (0.016) 0.017*** (0.004) 

* p < 0.1, ** p < 0.05; *** p < 0.01.  
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Table A4.2.   Results of HMM after Controlling Moderator in W 

Variable Name 
State 1 

(Low Motivation) 
State 2 

(Medium Motivation) 
State 3 

(High Motivation) 

Xit β – Posterior Mean (Standard Deviation) 

𝑐| -3.075*** (0.069) 0.325*** (0.087) 7.054*** (0.330) 
Matched_tagsit 0.015*** (0.001) 0.023*** (0.001) 0.030*** (0.001) 
Group_sizet 0.003*** (0.000) 0.002*** (0.000) -0.010*** (0.002) 
Tenureit -0.0004* (0.000) -0.006*** (0.000) -0.016*** (0.001) 
Total_answersi,t-1 0.0005*** (0.000) 0.001*** (0.000) 0.003*** (0.000) 
𝜎9 1.010*** (0.006) 

Wi,t-1 ξ – Posterior Mean (Standard Deviation) 

𝑐} -1.655*** (0.018) -0.581*** (0.026) 1.069*** (0.127) 
Answers_receivedi,t-1 0.214*** (0.017) 0.021 (0.023) 0.013 (0.054) 
Upvotes_answeri,t-1 0.238*** (0.023) 0.101*** (0.022) 0.015 (0.059) 
Accepted_answersi,t-1 0.588*** (0.038) 0.221*** (0.036) 0.060 (0.096) 
Badgesi,t-1 0.400*** (0.033) 0.198*** (0.033) 0.026 (0.063) 
Moderator i,t-1 -0.115 (0.086) 0.284*** (0.089) 0.803*** (0.145) 

Initial Probability 0.758*** (0.014) 0.213*** (0.014) 0.029*** (0.005) 

* p < 0.1, ** p < 0.05; *** p < 0.01.  

 

Table A4.3.   Results of HMM after Controlling New Questions by Moderator in W 

Variable Name 
State 1 

(Low Motivation) 
State 2 

(Medium Motivation) 
State 3 

(High Motivation) 

Xit β – Posterior Mean (Standard Deviation) 

𝑐| -2.990*** (0.080) 0.364*** (0.079) 7.368*** (0.365) 
Matched_tagsit 0.015*** (0.000) 0.023*** (0.001) 0.029*** (0.001) 
Group_sizet 0.002*** (0.001) 0.002*** (0.000) -0.011*** (0.002) 
Tenureit -0.0005** (0.000) -0.006*** (0.000) -0.015*** (0.001) 
Total_answersi,t-1 0.0005*** (0.000) 0.001*** (0.000) 0.003*** (0.000) 
𝜎9 1.012*** (0.005) 

Wi,t-1 ξ – Posterior Mean (Standard Deviation) 

𝑐} -1.666*** (0.020) -0.567*** (0.027) 1.442*** (0.246) 
Answers_receivedi,t-1 0.220*** (0.016) 0.014 (0.023) 0.003 (0.059) 
Upvotes_answeri,t-1 0.234*** (0.015) 0.115*** (0.014) 0.028 (0.027) 
Accepted_answersi,t-1 0.592*** (0.035) 0.253*** (0.026) 0.075** (0.036) 
Badgesi,t-1 0.408*** (0.034) 0.221*** (0.038) -0.049 (0.064) 
New_q_moderatorsi,t-1 -0.002 (0.005) -0.003 (0.009) 0.001 (0.038) 

Initial Probability 0.758*** (0.016) 0.214*** (0.015) 0.028*** (0.005) 

* p < 0.1, ** p < 0.05; *** p < 0.01.  
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Table A4.4.   Results of HMM on Weekly Data for Day 101-300 Subsample 

Variable Name 
State 1 

(Low Motivation) 
State 2 

(Medium Motivation) 
State 3 

(High Motivation) 

Xit β – Posterior Mean (Standard Deviation) 

𝑐| -0.986*** (0.116) 10.566*** (0.772) 37.557*** (2.661) 
Matched_tagsit 0.003*** (0.000) 0.014*** (0.001) 0.031*** (0.001) 
Group_sizet 0.002*** (0.001) -0.062*** (0.005) -0.213*** (0.016) 
Tenureit -0.002*** (0.000) -0.029*** (0.001) -0.070*** (0.003) 
Total_answersi,t-1 0.002*** (0.000) 0.013*** (0.000) 0.024*** (0.001) 
𝜎9 2.028*** (0.030) 

Wi,t-1 ξ – Posterior Mean (Standard Deviation) 

𝑐} -1.835*** (0.043) -0.793*** (0.066) -0.124*** (0.303) 
Answers_receivedi,t-1 0.072*** (0.012) 0.023 (0.015) 0.021 (0.035) 
Upvotes_answeri,t-1 0.069*** (0.017) 0.018 (0.017) 0.013 (0.027) 
Accepted_answersi,t-1 0.110*** (0.038) 0.056*** (0.018) 0.128 (0.083) 
Badgesi,t-1 0.183*** (0.033) 0.144*** (0.036) -0.054 (0.044) 

Initial Probability 0.769*** (0.045) 0.192*** (0.041) 0.039*** (0.011) 

* p < 0.1, ** p < 0.05; *** p < 0.01.  
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